Homework 11

Due in:

Q2: You must use the cross-cancelling technique.

A Fueleste 0.41/2	
1. EValuate 64 ⁷²	3. Estimate the answer to
	27.91+7.87
	0.46×1.75
F 2	
$2^{3} \times \frac{2}{3}$ (chow working)	A What is the inverse function
$2 \lambda = (SHOW WORKING)$	
$2.\frac{7}{7}\times\frac{7}{5}$ (SHOW WORKING)	for $\gamma \rightarrow 4\gamma + 7$
$2.\frac{-7}{7}\times\frac{-5}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
$2.\frac{7}{7} \times \frac{7}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
$2.\frac{7}{7} \times \frac{7}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
$2.\frac{7}{7} \times \frac{7}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
$2.\frac{7}{7} \times \frac{1}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
2. $\frac{7}{7} \times \frac{1}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
2. $\frac{7}{7} \times \frac{1}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
2. $\frac{7}{7} \times \frac{1}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
2. $\frac{7}{7} \times \frac{1}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
2. $\frac{7}{7} \times \frac{1}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
2. $\frac{7}{7} \times \frac{1}{5}$ (Show working)	for $x \to 4x + 7$
2. $\frac{7}{7} \times \frac{1}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
2. $\frac{7}{7} \times \frac{1}{5}$ (SHOW WORKING)	for $x \to 4x + 7$
2. $\frac{7}{7} \times \frac{1}{5}$ (SHOW WORKING)	for $x \to 4x + 7$

5. Is 300 in this sequence? Give a reason for your answer.2, 5, 10, 17, 26	8. If you reflect the point (1,7) in the x axis, what are its new coordinates?
6. Solve 4x - 4 > 3x - 1	9. What is the value of x? $P_{10 \text{ cm}} = \frac{10 \text{ cm}}{24 \text{ cm}} R$
7. Substitute $a = -4$ and $b = -3$ into $2a^2 + 3b$	10. Expand and simplify; (3x – 5)(x – 4)

11. p = 110° 149° 120° 109° p° 157° p° 157° p° 157° p° 157° p° 157° p°	14. If you rolled a 8 faced die, numbered 1 to 8, 32 times, how many prime numbers would you expect to get?
(show working)	
12. What is the exterior angle of a regular nonagon?	15. Increase 40 by 15%
13. A piece of timber is cut to 1.5m with a 10% error interval. Write an inequality to show the possible lengths.	16. What is $\frac{3}{5}$ of $\frac{5}{7}$ of 35?

17. What are the gradient and the coordinates of the y intercept of the graph y = 3x + 1	19. Solve the equation; 4 - 3x = 1
18. Alice and Ben share some	20. A rectangle 6cm by 5cm is
money in the ratio 2:5. Alice	enlarged by a scale factor of 2.
receives £27. How much does	What is the area of the
Ben receive?	enlarged shape?

Total:

